If it's not what You are looking for type in the equation solver your own equation and let us solve it.
29y^2-42y-11=0
a = 29; b = -42; c = -11;
Δ = b2-4ac
Δ = -422-4·29·(-11)
Δ = 3040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3040}=\sqrt{16*190}=\sqrt{16}*\sqrt{190}=4\sqrt{190}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-4\sqrt{190}}{2*29}=\frac{42-4\sqrt{190}}{58} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+4\sqrt{190}}{2*29}=\frac{42+4\sqrt{190}}{58} $
| z²=16 | | 62=5x-2 | | 7/3x-1=1/2 | | p=14,75/1+0,01× | | y+2y+3y=6 | | 60+3x*(80-2x)=0 | | v^2-59=0 | | q^2-66=-28 | | -5(x-2)-9=1 | | 2x/14=18 | | 22/8=110/t | | 4^(3x+5)=16 | | x-5=10+2 | | 24/3=84/m | | -3((6y+15)/3)+4y=-13 | | x+x+2+20-(x+x+2)=20 | | 28/3=84/m | | 5c+17=9(-c+12+3c | | (1/x^2)+10=35 | | 360(1/x-1/x+5)=48/60 | | 4x^2-5x+7=2x+7 | | 4(2a-5)=6(a+2) | | 6x+54=-3 | | 32x-18=-20x-10 | | 3y•y=3y2 | | 3x=35-4 | | 4x2+36x+36=0 | | 2-3z=7-48 | | 5-y/2=3y/4-y | | (3x-1)+(4x+1)+(3x)=70 | | 4=(1/4)-5x | | (8x)X(4x)=360 |